Biegung um die y-Achse
$$\frac{\sigma_{m,y,d}}{f_{m,y,d}}=\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}=$$
Biegung um die z-Achse
$$\frac{\sigma_{m,z,d}}{f_{m,z,d}}=\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Doppelbiegung
$$\frac{\sigma_{m,y,d}}{f_{m,y,d}}+k_m\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+0.7\cdot\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$ $$\frac{\sigma_{m,y,d}}{f_{m,y,d}}k_m+\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=0.7\cdot\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Zug in Faserrichtung
$$\frac{\displaystyle\sigma_{t,0,d}}{\displaystyle f_{t,0,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{t,0,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Druck in Faserrichtung
$$ \frac{\displaystyle\sigma_{c,0,d}}{\displaystyle f_{c,0,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{c,0,k}\cdot k_{mod}}{\gamma_m}}=$$
Biegung und Zug
$$\frac{\displaystyle\sigma_{t,0,d}}{\displaystyle f_{t,0,d}}+\frac{\sigma_{m,y,d}}{f_{m,y,d}}+k_m\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{t,0,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}+\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+k_m\cdot\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$ $$\frac{\displaystyle\sigma_{t,0,d}}{\displaystyle f_{t,0,d}}+k_m\frac{\sigma_{m,y,d}}{f_{m,y,d}}+\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{t,0,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}+k_m\cdot\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Biegung und Druck
$$\left(\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle f_{c,0,d}}\right)^2+\frac{\sigma_{m,y,d}}{f_{m,y,d}}+k_m\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\left(\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{c,0,k}\cdot k_{mod}}{\gamma_m}}\right)^2+\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+k_m\cdot\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$ $$\left(\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle f_{c,0,d}}\right)^2+k_m\frac{\sigma_{m,y,d}}{f_{m,y,d}}+\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\left(\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{f_{c,0,k}\cdot k_{mod}}{\gamma_m}}\right)^2+k_m\cdot\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Schub Vz in Faserrichtung
$$\frac{\displaystyle\tau_{z,d}}{\displaystyle f_{v,d}}=\frac{\displaystyle\frac{1.5\cdot V_{z,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}=$$
Schub Vy in Faserrichtung
$$\frac{\displaystyle\tau_{y,d}}{\displaystyle f_{v,d}}=\frac{\displaystyle\frac{1.5\cdot V_{y,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}=$$
Schub Vy und Vz in Faserrichtung
$$\left(\frac{\displaystyle\tau_{z,d}}{\displaystyle f_{v,d}}\right)^2+\left(\frac{\displaystyle\tau_{y,d}}{\displaystyle f_{v,d}}\right)^2=\left(\frac{\displaystyle\frac{1.5\cdot V_{z,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}\right)^2+\left(\frac{\displaystyle\frac{1.5\cdot V_{y,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}\right)^2=$$
Torsion
$$\frac{\tau_{tor,d}}{f_{v,d}\cdot k_{shape}}=\frac{\displaystyle\frac{M_{T,ed}}{\displaystyle W_T}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}\cdot k_{shape}}{\gamma_m}}=$$
Schub Qy und Qz in Faserrichtung und Torsion
$$\frac{\displaystyle\tau_{tor,d}}{\displaystyle f_{v,d}\cdot k_{shape}}+\left(\frac{\displaystyle\tau_{z,d}}{\displaystyle f_{v,d}}\right)^2+\left(\frac{\displaystyle\tau_{y,d}}{\displaystyle f_{v,d}}\right)^2=\frac{\displaystyle\frac{M_{T,ed}}{\displaystyle W_T}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}\cdot k_{shape}}{\gamma_m}}+\left(\frac{\displaystyle\frac{1.5\cdot V_{z,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}\right)^2+\left(\frac{\displaystyle\frac{1.5\cdot V_{y,ed}}{A\cdot k_{cr}}}{\displaystyle\frac{f_{v,k}\cdot k_{mod}}{\gamma_m}}\right)^2=$$
Biegeknicken um die Y-Achse
Trägheitsradius: $$i_y=\sqrt{\frac{I_y}A}=$$
cm
Schlankheit: $$\lambda_y=\frac{s_{k,y}}{i_y}=$$
bezogene Schlankheit: $$\lambda_{rel,y}=\frac{\lambda_y}\pi\cdot\sqrt{\frac{f_{c,0,k}}{E_{0,05}}}=$$
Beiwert: $$k_y=0.5\cdot\left[1+\beta_c\cdot\left(\lambda_{rel,y}-0.3\right)+\lambda_{rel,y}^2\right]=$$
Knickbeiwert: $$k_{c,y}=\frac1{k_y+\sqrt{k_y^2-\lambda_{rel,y}^2}}=$$ $$\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle k_{c,y}\cdot f_{c,0,d}}+\frac{\sigma_{m,y,d}}{f_{m,y,d}}+k_m\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{k_{c,y}\cdot f_{c,0,k}\cdot k_{mod}}{\gamma_m}}+\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+k_m\cdot\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Biegeknicken um die Z-Achse
Trägheitsradius: $$i_z=\sqrt{\frac{I_z}A}=$$
cm
Schlankheit: $$\lambda_z=\frac{s_{k,z}}{i_z}=$$
bezogene Schlankheit: $$\lambda_{rel,z}=\frac{\lambda_z}\pi\cdot\sqrt{\frac{f_{c,0,k}}{E_{0,05}}}=$$
Beiwert: $$k_z=0.5\cdot\left[1+\beta_c\cdot\left(\lambda_{rel,z}-0.3\right)+\lambda_{rel,z}^2\right]=$$
Knickbeiwert: $$k_{c,z}=\frac1{k_z+\sqrt{k_z^2-\lambda_{rel,z}^2}}=$$ $$\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle k_{c,z}\cdot f_{c,0,d}}+k_m\frac{\sigma_{m,y,d}}{f_{m,y,d}}+\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{k_{c,z}\cdot f_{c,0,k}\cdot k_{mod}}{\gamma_m}}+k_m\cdot\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$
Biegedrillknicken
effektive Länge l
ef =
cm
kritische Biegespannung: $$\sigma_{m,crit}=\frac{M_{y,crit}}{W_y}=\frac{\pi\cdot\sqrt{E_{0,05}\cdot I_z\cdot G_{0,05}\cdot I_T}}{l_{ef}\cdot W_y}=$$ N/mm²
kritische Biegespannung: $$\sigma_{m,crit}=\frac{0.78\;\cdot b^2}{h\cdot l_{ef}}\cdot E_{0,05}=$$ N/mm²
bezogene Kippschlankheitsgrad: $$\lambda_{rel,m}=\sqrt{\frac{f_{m,k}}{\sigma_{m,crit}}}=$$
Kippbeiwert: $$k_{crit}=$$
Kippbeiwert: $$k_{crit}=1.56-0.75\cdot\lambda_{rel,m}=$$
Kippbeiwert: $$k_{crit}=\frac1{\lambda_{rel,m}^2}=$$
Knickbeiwert: k
c,y =
k
c,z =
$$\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle k_{c,y}\cdot f_{c,0,d}}+\frac{\sigma_{m,y,d}}{k_{crit}\cdot f_{m,y,d}}+\left(\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}\right)^2=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{k_{c,y}\cdot f_{c,0,k}\cdot k_{mod}}{\gamma_m}}+\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{k_{crit}\cdot f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}+\left(\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}\right)^2=$$
$$\frac{\displaystyle\sigma_{c,0,d}}{\displaystyle k_{c,z}\cdot f_{c,0,d}}+\left(\frac{\sigma_{m,y,d}}{k_{crit}\cdot f_{m,y,d}}\right)^2+\frac{\displaystyle\sigma_{m,z,d}}{\displaystyle f_{m,z,d}}=\frac{\displaystyle\frac{N_{ed}}A}{\displaystyle\frac{k_{c,z}\cdot f_{c,0,k}\cdot k_{mod}}{\gamma_m}}+\left(\frac{\displaystyle\frac{M_{y,ed}}{W_y}}{\displaystyle\frac{k_{crit}\cdot f_{m,k}\cdot k_{mod}\cdot k_{hz}\cdot k_{sys}}{\gamma_m}}\right)^2+\frac{\displaystyle\frac{M_{z,ed}}{W_z}}{\displaystyle\frac{f_{m,k}\cdot k_{mod}\cdot k_{hy}\cdot k_{sys}}{\gamma_m}}=$$